OLYMPUS奥林巴斯相控阵全聚焦TFM
奥林巴斯工业资源TFM振幅保真度读取抽象
总聚焦方法(TFM)检查技术要求操作员定义TFM网格的位置和分辨率。新的检查代码要求TFM网格分辨率足够精细,以达到小于或等于2 dB的幅度保真度。幅度保真度对应于由TFM网格分辨率参数引起的幅度变化(以dB标度为单位)。这里提出使用简单且保守的理论模型来近似设置的振幅保真度值。该模型使用探针,零件和TFM网格中的参数,计算坏情况下的幅度保真度。与两个不同的TFM用例的经验数据进行了比较。结果表明,理论模型为经验测度提供了一个保守的近似值,总是稍微高估幅度保真度值。实验结果表明,网格分辨率约为λ0 / 5是足以达到规范要求(2 dB为单位),而理论模型计算在λ稍微更精细的网格0 /7。
总聚焦法(TFM)作为一种*的标准化相控阵(PA)检查技术的引入带来了新的概念和参数,需要操作员进行定义。标准PA和TFM检查之间的主要区别之一是感兴趣区域(ROI)的概念。虽然在标准PA中,关注区域直接由聚焦法则方向(即折射角)定义,但TFM的关注区域可以独立于声传播轴。感兴趣的TFM区域通常由具有特定位置和分辨率的矩形框定义。虽然通常通过要检查的区域和所选的声学模式(例如TT,TTT,TLT等)来定义感兴趣区域的定位,但要定义网格分辨率则比较棘手。
尽管非常精细的TFM网格(即高分辨率)可以提供更好的清晰度,并且可能更容易表征,但同时也增加了计算和存储负担,因此降低了总体检查效率。相反,较粗的网格(即低分辨率)降低了检测的可能性,并削弱了特征和尺寸调整能力。基于幅度的大小调整技术(例如-6 dB下降技术)高度依赖于缺陷的大幅度测量。因此,操作员在设置栅格分辨率时必须做出妥协,以确保测量真实峰值幅度的可能性足够高而不影响检查效率。
尽管操作员可以任意确定这种折衷办法,但有关TFM检查的新编写的代码和标准规定,由网格分辨率引起的大幅度变化(也称为幅度保真度)应为2 dB。这为操作员提供了低限度的目标。实际上,某些操作人员肯定会以小于2 dB的幅度保真度为目标,但尽可能接近此极限,以实现更高的检查率。
本文档旨在描述TFM网格分辨率为何以及如何影响幅度测量。它还提供了一种理论方法,可用于根据声学设置,零件检查和网格分辨率来计算TFM网格的幅度保真度值。将理论方法与在两种不同检查设置下获得的经验结果进行比较。
正如简介中简要提到的那样,TFM网格分辨率在确定检测概率和调整大小能力方面起着重要作用。基于幅度的大小调整技术依赖于指示的大测量幅度来确定其宽度和高度。
图1说明了在脉冲回波TFM模式下检测到的点散射器的典型整流幅度响应。使用颜色图显示实际的散射体响应,大振幅值对应于红色区域,零振幅为白色。每个彩色的椭圆对应一个不同的振幅平稳段,这是由于信号的校正(值)表示所致。每个灰色十字代表TFM网格的评估点;相邻点之间的水平和垂直距离分别代表横向和深度网格分辨率。灰色虚线箭头表示声传播轴(即信号相位变化的方向)。(λ为这样的散射体的典型尺寸在探针中心波长的术语还给出0 = C / F0)。
图1 –使用常见的大带宽脉冲信号的假设点散射器的校正幅度TFM图像的色标表示。声波传播轴与近似散射尺寸一起示出在探针中心波长λ而言0。
由于真实的大振幅(红色区域)位于测量点之间,因此不会在TFM图像中检测到。相反,将测量较低的大值(黄色)。如果使用基于幅度的大小调整技术(例如-6 dB技术),则由于较差的网格分辨率而导致的大幅度误差将导致缺陷尺寸大大高估。尽管在当前网格位置中未测量实际大值,但如果仅将网格移动一小段距离,则TFM网格点之一将检测到实际大值。
幅度保真度要求定义为TFM网格测得的实际大值(红色区域)与小大幅度之间的大幅度变化(以dB标度为单位)。换句话说,幅度保真度是如果具有恒定分辨率的TFM网格在所有方向上以非常小的增量移动,则测得的大峰值的幅度变化。因此,可以通过移动TFM网格并在以检测到的缺陷为中心的区域中记录大幅度,来凭经验测量幅度变化。在某些位置,实际大值将直接在TFM网格评估点上(产生A max),在其他位置,它将直接位于两个评估点的中间(产生A min))。下面给出了用于计算振幅保真度的公式。
AF = 20日志10 (A 分钟 / A 大)
虽然对幅度保真度进行经验测量是可行的,但它有些复杂。因此,这里提出一种使用简单声学模型的理论方法。
如图2所示,声传播轴(灰色箭头)对应于大幅度变化的方向。可以使用高斯调制正弦波1(使用探头和被检零件参数)来估算沿该方向的信号分布(图2)。振荡信号将在此处用作幅度保真度读数的典型散射响应。
图2 –高斯波形的表示。传播轴(x轴)相对于所述探头的中心频率波长被表示(λ 0)。波形参数:f 0 = 7.5 MHz,c = 5890 m / s,BW = 1.0。
高斯波形使用以下公式计算:
克(ρ)= E (-ρ 2 /(2C 2 σ 2)) cos(K 0 ρ+θ 0)
其中ρ表示沿着传播轴的距离,c是在被检查部的音速,σ是探针带宽和中心角频率之间的关系,(ω 0)中,k 0和θ对应于中心频率波数,0是介于0到2π之间的相位偏移。使用以下公式计算波数(k 0)和带宽项(σ)。
ķ 0 =ω 0 / C
σ=√(8ln2)/(BWω 0)
由于需要计算幅度保真度坏情况并确保它不会被低估,因此将带宽设置为BW = 1.0并将相位偏移设置为θ0 =0。这允许沿着声波更窄的波形传播轴和在其包络线内居中的峰(请参见图2中的示例)。由于始终对TFM图像进行校正(值),因此波形方程变为
g(ρ)= | ë (-ρ 2 /(2C 2 σ 2)) cos(K 0 ρ)|
同样,为了计算坏情况的幅度保真度值,必须在TFM网格上对角线选择声传播轴ρ。因此,声传播轴分辨率是沿x轴和z轴的分辨率的函数。
ΔD= +√(ΔX 2 +ΔZ 2)
由于网格分辨率而可以测量的小大值(A min)对应于从波形大峰值位置开始的ρ=±Δd/ 2处的信号幅度。由于建模波形沿传播轴居中(在ρ= 0处为峰值),并且大值A max = 1,因此理论幅度保真度计算非常简单。图3显示了一个以ρ= 0为中心的整流波形的示例,其网格分辨率(蓝点)允许振幅保真度为2 dB。
AF = -20日志10 ((G(ρ=ΔD/ 2))/ A 大)= -20日志10 (克(ρ=ΔD/ 2))
图3 -无量纲相对于探头中心频率波长λ的传播轴的整流(值)波形的插图0。大峰沿传播轴居中(ρ= 0)。蓝点代表点在ρ/λ 0 =±0.1,其对应于AF =2分贝的振幅保真度值。波形参数:f 0 = 7.5 MHz,c = 5890 m / s,BW = 1.0。
本节说明的是,上述的理论模型可以用于计算振幅保真度值。如前所述,理论模型使用了坏情况的方案,与经验数据相比,它可以高估幅度保真度。
使用两个不同设置上的两个回波进行比较。一部分介绍了使用的实验设置以及如何进行经验幅度保真度测量,而第二部分介绍了理论和经验结果并提供了完整的分析。
验证使用了两个不同的TFM用例(如下图所示)。一种设置使用7.5 MHz探头,该探头直接与包含一系列侧面钻孔(SDH)的零件接触。第二种设置使用5 MHz探头,该探头在也包含SDH的碳钢块上带有倾斜的楔形。一种设置使用直接LL传播模式(使用纵波),而第二种设置使用直接TT模式(剪切波)。
使用这两种设置,选择了两个不同的SDH,总共四个。图5显示了图像TFM -高分辨率(λ 0 /100) -所选择的SDHs。注意声学传播方向的差异。对于一种使用情况(顶行),声传播大部分是垂直的,而在第二种情况下,声传播对角线(左下)而几乎水平(右下)位于网格上。
图4 -高分辨率(λ 0 /100)的所有四个SDHs useds用于实验验证的TFM图像。顶行:一种情况下(λ 0 =0.785毫米),底排:第二壳体(λ 0 =0.648毫米)。
为了将理论模型与经验数据进行比较,必须针对一系列不同的TFM网格分辨率测量幅度保真度。因此,所有四个SDHs计算五个不同的网格分辨率,即(λ 0/20,λ 0 /10,λ 0 /5,λ 0 /4,λ 0 /3)。为了简单起见,TFM图像的x轴和z轴都具有相同的分辨率(方形TFM网格分辨率)。
为了获得振幅保真度测量,我们需要在TFM图像中以定义的分辨率测得的峰值A max的实际大值和小的A min。高分辨率TFM图像(参见图5)用于获得实际大值A max。确定小的大值A min会比较麻烦。实际上,TFM图像必须使用写为中心波长的一小部分所定义的网格分辨率(计算λ 0/ x),并且必须测量大值。然后,将网格位置沿不同方向稍微移动,并在每个增量步长处测量大值。由于各种可能的缺陷方向,在图6所示的所有点组合中移动网格非常重要。在此图中,蓝网格表示具有定义分辨率的初始TFM网格。较细的灰网格表示需要逐步评估的所有网格点。红点代表特定增量的评估体素。在当前研究中,增量步长设置为网格分辨率的1/20。在所有测得的大值中,取小的一个以计算幅度保真度值。
图5 –经验振幅保真度测量的TFM网格位置增量的方向示意图。蓝网格代表初始TFM网格,而精细的灰网格代表所有TFM网格的增量移动以获得幅度变化。
同样,在所有方向上移动TFM网格以测量可靠的幅度保真度值非常重要。例如,如果,对于一次使用的情况下,网格只沿x轴,测量将是相当低的,因为声传播方向是垂直于x轴的振幅的保真度移动。相反,由于传播轴沿垂直轴,因此沿z轴移动网格将提供更可靠的测量。
图7显示了两个测试案例的经验幅度保真度和理论幅度保真度测量之间的比较。使用前述方法计算理论曲线(纯曲线)。计算了两条不同的曲线,一条曲线直接使用网格分辨率(Δx或Δz),第二条曲线使用对角轴分辨率(Δd)。
对于每种网格分辨率,经验曲线(虚线)表示在所有轴上获得的大振幅保真度。除了经验和理论结果外,红色虚线还表示了TFM码要求(2 dB)。
图6 –两个TFM用例的实验和理论幅度保真度测量比较。左侧:联系用例(LL模式)。右侧:倾斜楔形用例(TT模式)。红色虚线表示2 dB代码要求。
查看一个用例的结果(左图7),两个SDH的幅度保真度测量都类似于使用x轴分辨率(Δx)的理论曲线。实际上,由于SDH沿垂直(声传播)轴的方向(见图5),这才有意义。同样,由于SDH的相似性,经验曲线几乎相同。需要注意的是,在这种情况下,以符合所需的网格分辨率与代码要求达到在约λ 0 /5使用经验数据时并在约λ 0使用理论模型(坏情况)时/ 7。
在第二个用例(右图7)上获得的结果表明,SDH的幅度保真度之间存在差异。这主要是由于它们的方向(参见图5),因为一个SDH在TFM网格上对角地取向,在该位置分辨率较差,因此提供了高的幅度保真度值。但是,即使在这种情况下,沿对角轴(橙色曲线)的理论结果仍然可以提供幅度值的保守估计。在这种情况下,λ的网格分辨率0需要/ 6使用经验数据,以及λ当满足规范要求0 /7,如果使用的理论模型。
在这两种使用案例中,理论模型都提供了一种保守的方法,可以根据其分辨率,零件速度和探针参数来近似估算TFM网格的振幅保真度。
TFM检查技术要求用户正确选择网格参数,例如其位置和分辨率。栅格位置取决于被检零件的几何形状和可达到的声区,栅格分辨率定义应取决于所使用的探头频率和声模。本文所述的幅度保真度读数可帮助用户确定必要的网格分辨率。该读数可测量由网格分辨率引起的幅度变化,该值将包括在新检查代码(例如ASME第V节)的要求中。
本文证明了所描述的理论模型提供了一种保守的方法来近似振幅保真度值。此处显示的另一个重要方面是幅度保真度测量对缺陷方向的依赖性。在经验测量的情况下,必须通过在所有四个选定方向上移动网格来测量幅度变化。
在CIVA(EXTENDE)软件中使用这种近似值来定义超声探头脉冲波形。
上海玖横仪器有限公司是一家专业从事仪器仪表研发、生产、销售及服务的企业。超声波探伤仪:(、、、、USM 36超声探伤仪、USN 60超声探伤仪、USM go+超声探伤仪、、OmniScan MX2相控阵TOFD探伤仪);超声波测厚仪:(、、、DM5E超声波测厚仪、CL5超声波测厚仪、,ETG-100电磁高温测厚仪);超声波探头;定制相控阵探头;涡流探伤仪:(NORTEC 600涡流探伤仪);硬度计;DR平板探测器:1313DX ,1515DXT-I ,2520DX ,2530HE,4343HE, Dexela 1207 ,Dexela 1313 ,Dexela 2121S ,Dexela CMOS平板探测器 ,XRD 0822 ,XRD 1611 ,XRD 1621 ,XRD 4343RF ,XRD 3025 ,XRpad 4336 ,XRpad 4343 F ,XRpad2 3025 ,XRpad2 4336。内窥镜:(IPLEX NX奥林巴斯内窥镜、IPLEX GX/GT奥林巴斯内窥镜、IPLEX G Lite奥林巴斯内窥镜、IPLEX TX奥林巴斯内窥镜、IPLEX YS奥林巴斯内窥镜、XLGo+工业视频内窥镜GE、XL Detect+工业视频内窥镜GE新款、UVin专业紫外视频内窥镜、);脉冲发生器:(DRP300替代奥林巴斯的5072PR,5073PR);合金分析仪:(Vanta奥林巴斯手持式合金分析仪、DELTA Professional手持式合金分析仪奥林巴斯、DELTA Element手持式合金分析仪奥林巴斯)等仪器仪表,上海玖横仪器有限公司秉承“诚信为本,顾客至上”的经营理念;并以价格的优势,服务的与各行取的友好的合作伙伴,为经营规模的不断扩大奠定良好的基础,立志成为国内的仪器仪表企业! 我们始终以客户的利益为根本,坚持为海内外客户提供的产品与服务,以此赢得更多客户的信任。 欢迎惠顾! 您的满意是我们的追求。上海玖横仪器有限公司SWC-2横波耦合剂,横波探头的耦合剂。